Report

—7)\
Extending 7

Bazel tolts
Full Potential 7

Leveraging Cloud
and Parallelization to
Ship Reliable Code Faster

/Brian Moakley
& Marcus Eagan

'?hl'mhiclatjrﬁc:car : : B =
“irection: passi : & :
T o :

Vehicle type:

! — Direction: pas *
i 4
i

Y Massively parallel o,
remote execution
platform

Intelligent
$ caching e

for faster builds & retraining

o3 Dependency
management
ensures reproducibility

17 nativelink

Adaptive
scheduler
optimizes costs (CPUs,GPUs)

Seamless
integration

Open source. Bazel,
Siso/Reclient, Pants. C/C++,
Python, Go, Rust & more

; " Start free with
Nativelink Cloud
== app.nativelink.com

https://app.nativelink.com

Extending Bazel to Its
Full Potential

Leveraging Cloud and Parallelization
to Ship Reliable Code Faster

Brian Moakley and Marcus Eagan

O'REILLY"

Extending Bazel to Its Full Potential
by Brian Moakley and Marcus Eagan

Copyright © 2025 O'Reilly Media, Inc. All rights reserved.

Published by O'Reilly Media, Inc., 141 Stony Circle, Suite 195, Santa Rosa, CA
95401.

O'Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (https://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Megan Laddusaw Cover Designer: Ellie Volckhausen
Development Editor: Gary O’Brien Cover lllustrator: Ellie Volckhausen
Production Editor: Christopher Faucher Interior Designer: David Futato
Copyeditor: Penelope Perkins Interior lllustrator: Kate Dullea

Proofreader: O’Reilly Media, Inc.
August 2025: First Edition

Revision History for the First Edition
2025-07-25: First Release

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Extending Bazel to
Its Full Potential, the cover image, and related trade dress are trademarks of O’'Reilly
Media, Inc.

The views expressed in this work are those of the authors and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Trace Machina. See our
statement of editorial independence.

979-8-341-62392-7
[LSI]

https://oreilly.com
https://oreil.ly/editorial-independence

Table of Contents

Extending Bazel to Its Full Potential...................

Introducing Bazel

Installing Bazel

Bazel Quick Start

Dependency Management

Executing Automated Tests
Extending Bazel's Capabilities
Building Beyond Your Local Machine
Conclusion

20
28
31
35
45

Extending Bazel to Its
Full Potential

Modern-day build systems are just as diverse and dynamic as the
many programming languages out there. While build systems are
developed for a wide assortment of workflows and use cases, there
are three universal expectations from end users: such a system must
be fast, correct, and well-optimized.

Some build systems meet these expectations, but few are specifically
built from the ground up to fulfill these expectations in a single
stroke.

Introducing Bazel

Bazel, first released in 2015, is the open source version of Google’s
Blaze build system. Blaze started development in 2006 as a way to
unify Google’s growing codebase. Google famously keeps the vast
majority of its code in a single repository, otherwise known as a
monorepo. This repo contains almost every project in Google, allow-
ing any Google engineer to build any Google project with a single
command. Such a build system is required to be fast, scale with
the number of developers using it, and, most importantly, produce
identical builds regardless of the builder’s machine.

Blaze was the answer. Google designed Blaze for fast, correct builds.
By using a distributed cache, Blaze scales with the number of devel-
opers using it, condensing build times from days to hours, and from
hours to minutes. While ideal for a monorepo, Blaze works just as
well for projects composed of many different repos.

By 2014, after Blaze had become quite popular with its own develop-
ers, Google decided to make it available as an open source product
as a way to sell its cloud service for remote builds. Google called the
open source project Bazel, an anagram of Blaze.

You can run Bazel completely locally on your desktop without need-
ing remote execution or cloud services, but you'll see later how it
has also been extended to support distributed teams with remote
shared caching, parallelized builds, and cloud-based storage.

What Is Bazel?

Bazel is known as an artifact-based build system. In an artifact-based
build system, developers define a build file that includes the various
“artifacts,” such as the dependencies and resources required for the
build. Once they are defined, Bazel analyzes the build and generates
all the tasks needed to construct a build. Bazel will either generate
artifacts or fetch artifacts from a shared cache or online repositories.

The central build file is declarative. When defining a build, a devel-
oper provides the inputs, and Bazel manages the process of building
all the various dependencies. By analyzing the dependency graph,
Bazel is aware of the available resources. This means Bazel can fully
compile resources in parallel as needed. It can also include compiled
artifacts that haven’t changed from previous builds.

Bazel is a deterministic build system. Simply put, when a build file
defines the same inputs, Bazel will produce the same output. This
ensures each resulting build is “correct” (i.e., deterministic). Two
developers on two different machines with two different configura-
tions will be able to produce an identical build.

Why Should | Use Bazel?

You might be asking: What’s in it for me? Aren’t the tool’s conven-
tions too specific for my project? Does my project even meet the
requirements of being buildable by Bazel? Here’s what Bazel can
bring to the table in a nutshell:

2 | Extending Bazel to Its Full Potential

Declarative language

As a developer of Bazel build logic, you will use a higher-level
language called Starlark, a Python derivative. Starlark introdu-
ces an abstraction to the concepts of a build and hides its imple-
mentation complexities as much as possible. As a result, you
do not have to worry about low-level implementation details
like compilers or linkers. Instead, you just point your build to
the source code and declare dependencies. Bazel will figure out
the rest. Needless to say, you can still fine-tune the compiler or
linker settings if needed.

Reproducibility
When executing builds over and over again, you do not want
any surprises. Nondeterministic behavior erodes trust in the
correctness of build results. Bazel ensures a sandboxed build
execution by explicitly enforcing the definition of all of its
dependencies.

Scalability

Bazel's main focus is on projects with large codebases, predom-
inantly for organizations that have decided to put all of their
projects into a monorepo. But it’s not a dealbreaker if you
separate your projects into individual source code repositories.
That's common practice, especially if you are working on soft-
ware with a microservices architecture. Bazel can handle either
code organizational structure equally well.

Parallel and distributed execution
Improvements to build performance become more apparent in
larger codebases, as Bazel can execute its work in parallel and
in a distributed fashion. Build execution can be performed on a
single machine or distributed across multiple remote machines
(e.g., located in the cloud or in a data center).

Building polyglot projects

Many build tools support building only a single language or
ecosystem. That's not the case with Bazel, which can handle
polyglot projects. For example, it supports the JVM (Java
Virtual Machine) ecosystem, native languages, and JavaScript.
Furthermore, Bazel embraces modern software development
methodologies like containerization of applications with Docker
and deployment to orchestration engines like Kubernetes.

Introducing Bazel | 3

Extensibility
It's not uncommon for projects to have custom requirements.
While Bazel’s built-in support for languages and ecosystems is
expansive, it cannot cover every possible use case. With the
help of Bazel's extension mechanism, called rules, developers
can enhance the tool’s base functionality and share it across the
organization or wider community.

Long-term support

One of the biggest advantages to using Bazel is that Google is
driving it, which means that the project benefits from years of
in-house use and evolution at Google. Moreover, with Bazel’s
move to open source, it's also backed by a dedicated team
of Google developers. As a result, you can expect bug fixes,
new features, and long-term support. The latter was confirmed
explicitly in the 1.0 release announcement.

While all the aforementioned aspects of Bazel make for a compel-
ling build system, the true “killer feature” is the adoption of the
remote build execution (RBE) protocol. This open source protocol
allows for remote execution and caching, enabling you to improve
performance, scalability, and resource utilization by distributing
large-scale builds across compute clusters and sharing build artifacts
across distributed teams. In “Building Beyond Your Local Machine,”
you'll learn how the Nativelink service uses this protocol to provide
the infrastructure for remote builds.

I won’'t compare Bazel with other build tools in detail to see how
they stack up—doing so would require a whole other report. Hope-
fully, however, the next couple of sections will give you a sense
of its capabilities. You can find all the source code in a dedicated
repository on GitHub if youd like to follow along.

Installing Bazel

One of the nice things about Bazel is that it can be run in a large
variety of environments. That said, Bazel only officially supports
three platforms, while other platforms are community supported.
You can also install Bazel from popular package managers includ-
ing Homebrew, APT (Advanced Package Tool), and others. Finally,
being an open source project, Bazel also provides instructions on
installing from source.

4 | Extending Bazel to Its Full Potential

https://oreil.ly/37kBK
https://oreil.ly/37kBK

Installation Options

At the time of writing, Bazel officially supports Windows, macOS,
and Ubuntu. Given the variety of operating system distributions and
versions, it's hard to determine 100% compatibility without trying
it out. See the installation instructions for a detailed breakdown of
distributions and versions.

When installing on Windows, you should ideally install Bazel on
Windows 11, since Microsoft is no longer supporting Windows 10
after October 14, 2025. If you are using Windows 10, then you’ll
need to be running at least version 1703 (Creators Update). You'll
also need to install the Microsoft Visual C++ Redistributable library.

While Bazel doesn't list any macOS requirements, it’s always a good
idea to use the latest version of the operating system that supports
your device.

Alternatively, you can execute Bazel inside a Docker container. A
Docker execution environment might be helpful if you just want to
get familiar with Bazel without having to install a specific version
of the runtime yourself. Docker containers are easy to stand up
and can be disposed of after you've finished experimenting with
them. The project provides a Docker container based on Ubuntu
Linux with a preinstalled version of Bazel on the Google Cloud
Marketplace. For detailed usage information, refer to the relevant
section in the Bazel user manual.

Installing with Bazelisk

While Bazel provides lots of different installation options, the offi-
cial documentation recommends that you install using Bazelisk, a
Bazel wrapper written in Go. When running Bazel on the command
line, you call Bazelisk with the same commands as Bazel.

Why use Bazelisk instead of Bazel itself? One of the key aspects of
Bazel is being “correct” By providing the same inputs (source code
files, libraries, etc.) you should always receive the same output. The
same is true for Bazel itself. When compiling a project with Bazel,
the build system itself is also an input.

When you build a project with Bazelisk, the wrapper will look
for the .bazelversion file, which dictates the Bazel version, inside
your project. When this file is executed, Bazelisk will automatically
download and install the Bazel runtime and use it for the build. The

Installing Bazel | 5

https://oreil.ly/0YwR3
https://oreil.ly/zzBJi
https://oreil.ly/zzBJi

Bazel runtime for a specific version needs to be downloaded only
once.

This functionality ensures that your whole team knows exactly
which version of Bazel is required to build the project. Should the
build fail for whatever reason, it won’t be the result of an incompat-
ible runtime version but of the build logic itself. Moreover, in a
continuous integration (CI) environment, you need to ensure only
that the Bazelisk runtime is installed. There’s no need to maintain
multiple Bazel versions in parallel independent of the CI execution
environment (e.g., different CI agents or running the CI build in a
Docker container).

Installing on Windows

To install Bazelisk on Windows, first make sure that you have
installed the Microsoft Visual C++ Redistributable library. Next, you
need to install the Chocolatey package manager.

To do this, open an administrative shell and run the following
command:

> Get-ExecutionPolicy

If this returns “Restricted,” run the following to elevate permis-
sions so that Bazel can create symlinks before continuing with this
procedure:

> Set-ExecutionPolicy AllSigned or
Set-ExecutionPolicy Bypass - Scope Process

Now, run the following command:

> Set-ExecutionPolicy Bypass -Scope Process -Force;
[System.Net.ServicePointManager]::SecurityProtocol =
[System.Net.ServicePointManager]::SecurityProtocol -bor 3072;
iex ((New-Object System.Net.WebClient).DownloadString(
'"https://community.chocolatey.org/install.ps1'))

Finally, run these commands:
> choco install bazelisk

> bazelisk —-version
Installing on mac0S

To install Bazelisk on macOS, your best bet is to use the Homebrew
package manager. To get started, open a terminal and type the
following to install Homebrew:

6 | Extending Bazel to Its Full Potential

$ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/HEAD/install.sh)"

Once Homebrew is installed, run the following command:

$ brew install bazelisk
$ bazelisk --version

Installing on Linux

While there may be Bazelisk packages served by package managers,
it is recommended that you manually install the binary on Linux.
You can access the binaries from the project release page. From
there, download and install on your system. You will also need to
update your PATH variable to point to the installation location.

Installing with npm

You can also install Bazelisk using npm, the node package manager.
Run the following command:

> npm install -g @bazel/bazelisk
> bazelisk --version

Validating Your Installation

You can verify the Bazel installation by running the help command.
This command runs the Bazel executable and renders valuable usage
information on the console:

$ bazelisk help

WARNING: Invoking Bazel in batch mode since it is not invoked
from within a workspace (below a directory having a MODULE.bazel
file).

[bazel release 8.1.1]
Usage: bazel <command> <options>...
Available commands:

analyze-profile Analyzes build profile data.

aquery Analyzes the given targets and queries
the action graph.

build Builds the specified targets.

canonicalize-flags Canonicalizes a list of bazel options.

The initial warning indicates that you are accessing Bazel outside a
build directory. This warning goes away once Bazel detects that a
MODULE file is present.

Installing Bazel | 7

https://oreil.ly/wL_Wd

Especially if youre a Bazel beginner, you’ll find the help command
invaluable as a quick reference instead of having to jump back and
forth between the console and the documentation. The optional
command-line interface (CLI) completion feature is an even more
convenient feature.

Command-Line Completion

You might be familiar with the CLI completion functionality for
other tools. Some shells propose commands when you press the Tab
key or type certain letters. Bazel supports command-line completion
functionality for the shells Bash and Zsh. You can install this feature
as needed using the installation instructions on the Bazel website.

Bazel Quick Start

What'’s the best way to learn a new programming language or tool?
By trying out a “Hello World” example, of course. In this section,
we'll set up a C++-based project with the goal of compiling the
source code and running the application. You don't need to be a C+
+ expert; the concepts apply to Bazel’s support for other languages as
well. For a quick reference, refer to the Bazel documentation.

Basic Building Blocks

Every project in Bazel starts with a module file named (appropri-
ately) MODULE.bazel. The module file resides in the root directory
of your project. This is simply a text file with a .bazel extension that
defines the various dependencies required by your build targets. It
also provides metadata that other modules may use.

8 | Extending Bazel to Its Full Potential

https://oreil.ly/yvh3d
https://bazel.build/docs

In previous versions of Bazel, projects defined a WORKSPACE file
that was a “kitchen sink” approach for defining projects. It was
where you defined dependencies, wrote extensions, and performed
a variety of tasks. WORKSPACE files grew to be such a pain point
that Bazel began work on the Bzlmod project to replace them. At the
time of writing, Bazel 8 has disabled WORKSPACE files, and there
are plans to remove WORKSPACE functionality in Bazel 9.

One of the big advantages of switching to a module workflow is
that you no longer need to define transitive dependencies; this
new system automatically fetches dependencies. Should a project’s
dependency graph share two libraries using different versions, Bazel
will try to resolve the difference by using a library point release
that can satisfy both versions. The Minimal Version Selection (MVS)
algorithm is used to resolve the issue.

For example, if Project A requires SomeLibrary 1.10 and a later
dependency requires SomeLibrary 1.20, Bazel will use the higher
version, assuming that the point release won't break any functional-
ity. This is a big assumption, and thankfully, in cases where point
releases introduce problems, Bazel provides a means to define exact
versions.

The true benefit of using this new module system is that modules
can be imported into other modules. The Bazel Central Registry
provides a list of hundreds of modules that you can include in your
project. Each module page provides the module file code, version
history, and of course, the project homepage.

Bazel Quick Start | 9

The Bazel Central Registry provides instructions on publishing your
own module to the registry. Submitting a module requires a few
steps to validate the code and submit a pull request. Once approved,
your own module will be listed in the registry as seen in Figure 1.

. Browse all
Bazel Central Registry Q search for module... modules B2imod User Guide Contribute to the BCR

apple_support 1190

Install

Metadata
To start using this module, make sure you have set up Bzimod according to the user guide, and add
the following to your MODULE. bazel file: Homepage
https:/f
bazel_dep(name = "apple_support", version = "1.19.8"} (8] github.com/
bazelbuild/
Read the Release Notes apple_support
. . Maintainers
Version history 210 Keith
Smiley
119.0 view registry source = ¢) patrick
compatibility level 1 published 22 days ago ~ Balestra

Figure 1. Module page for the apple_support module

Using Build Files

As software projects grow in complexity over time, they’re usually
split up into modules. In a perfect world, modules group source
code based on a dedicated function or domain responsibility. For
example, you could organize a travel application by functionality
for account management, reservations, and payment processing. It’s
very common for one module to need the functionality of another
module, which requires that a dependency be defined at compile
time and/or runtime.

10 | Extending Bazelto Its Full Potential

In Bazel, a software module is called a package. The BUILD file (that
is, BUILD.bazel) indicates that we are dealing with a package. A
workspace can contain one or more packages and therefore one or
more BUILD files. Figure 2 shows an exemplary setup of a project
and its respective Bazel files.

with what Java calls a package. You are absolutely right.
It definitely makes discussing a Java project built with
Bazel much harder than it needs to be. In this report, I
will explicitly refer to either a Bazel package or a Java
package, as they are two different concepts.

< I Root directory
—D MODULE.bazel

Package

m Now, you may say that the Bazel term package overlaps

BUILD.bazel

Package

BUILD.bazel

Figure 2. A sample project built with Bazel with two packages

For the purpose of building a simple C++ project, let’s assume
that we are just dealing with a single Bazel package. Later, we'll
extend the setup of the build by breaking up the logic into a more
fine-grained structure. Alongside this, we'll also talk about the pros
and cons for each approach.

Bazel Quick Start | 11

Building a Simple (++ Project

Out of the “box,” Bazel supports the following languages and
frameworks: C/C++, Java, Objective-C, Python, Android, and shell
scripts. For other languages, you use community-developed rules.

In a Bazel, a rule is used to define custom functions that allow
the build system to interact with target compilers, input files, and
associated artifacts to produce an output. Each language will have
its own set of rules. These rules are also used to extend Bazel to add
additional functionality. While Bazel defines and supports the rules
for supported languages, the vast majority of rules are community
developed. Creating a custom rule is considered an advanced use of
Bazel.

To get you started on your first build, we'll start with a very small
and simple C++ app that prints a message to the console. Later, we'll
explore some more advanced concepts by producing a Java console
app with both tests and dependencies.

for this report, this code was originally from Bazel’s
example repo, where you can find sample code for
other programming languages as well.

m While you can find this source code in the official repo

Here is the simple directory structure breakdown of our C++ app:

}— MoDpuLE
L— HelloWorld
L— main
L— BUILD
L— hello-world.cc

As you can see, the root directory of the project contains the MOD-
ULE file. For now, the MODULE file is empty because our code
doesn’t require any external dependencies.

The BUILD file shown in Example 1-1 looks more interesting. We
start defining our Bazel package by using our first build rule. As
mentioned, a build rule knows how to build one or more outputs
from a set of inputs. In this example, we are using the built-in
cc_binary build rule. The sole input is represented by the source
file. Notice that the source file is passed in as an array. You provide
many file names or wild card characters to generate the file list.
Once executed, the build rule will produce an executable file.

12 | Extending Bazel to Its Full Potential

https://oreil.ly/wGyWN

Example 1-1. Modeling a C++ binary by pointing to the source

cc_binary(@
name = "hello-world", @
srcs = ["hello-world.cc"], ©

)

Here is the line-by-line breakdown:
@ The build rule for generating a C++ binary file
@ The name of the target

© A list of labels that represent the source code file locations on
disk

We have the proper code in place, but how do we actually execute
the logical steps required to compile the code? That’s the purpose
of a target. In Example 1-1, we defined a target with the name
hello-world. Next up, we'll invoke the target from the console with
the help of the Bazel runtime.

Building from the Command Line

Earlier, we ran the help command to verify the successful instal-
lation of Bazel. If you looked at the console output from that
command, you might have noticed the build command. It is the
primary command for executing a target. You can see the command
in action:

$ bazelisk build //main:hello-world

The build command instructs Bazel to build the binary. The double
slash (//) is a label that provides a reference to the root of your mod-
ule. The package of the build is main: and hello-world indicates
the name of your build target.

The definition of the target as part of the bazel command might
not look as you expected. Instead of just spelling out the name,
we also have to provide the path relative to the project structure.
Therefore, every target belongs to exactly one package. Bazel calls
the combination of package name plus target name a label, as shown
in Figure 3.

Bazel Quick Start | 13

//src/main/java/com/bmoakley/messenger:messenger-1ib

¥/V\—A/V-\J

Package name Target name

Figure 3. Composition of a label

Here is the console output that results from running that command:

INFO: Found 1 target...

Target //main:hello-world up-to-date:
bazel-bin/main/hello-world

INFO: Elapsed time: 1.055s, Critical Path: 0.02s

INFO: 1 process: 9 action cache hit, 1 internal.

INFO: Build completed successfully, 1 total action

At this point, you know your build was successful and that you can
immediately run hello-world. Any issues are printed here as well.

Exploring the Generated Artifacts

When Bazel generates your final build, it also creates a number of
folders in your build directory:

bazel-bin
A symlink to the most-written bin directory

bazel-<module-name>
The working directory for all the actions that took place in your

build

bazel-out
A symlink to the output path

bazel-testlogs
The results of all your unit tests

See the Bazel Output Directory Layout documentation for more
detail.

You can view the compiled artifacts by looking in the bazel-bin
directory:

$ 1s bazel-bin/main
_objs

hello-world
hello-world-0.params
hello-world.cppmap
hello-world.repo_mapping

14 | Extending Bazel to Its Full Potential

https://oreil.ly/kL0e1

hello-world.runfiles
hello-world.runfiles_manifest

You can run the compiled file inside the bazel-bin subdirectory, or
you can use the simple command that Bazel provides:

$ bazelisk run //main:hello-world

INFO: Analyzed target //main:hello-world (@ packages loaded,

0 targets configured).

INFO: Found 1 target...

Target //main:hello-world up-to-date:
bazel-bin/main/hello-world

INFO: Elapsed time: 0.156s, Critical Path: 0.00s

INFO: 1 process: 1 internal.

INFO: Build completed successfully, 1 total action

INFO: Running command line: bazel-bin/main/hello-world

Hello world

Bazel also provides a shortcut command to start the build. If you are
in a folder with a BUILD file, simply type the following to start the
current build:

$ bazelisk run //...

This command runs all the targets in the BUILD file. You also use
the same syntax to compile all the targets as well:

$ bazelisk build //...

If you need to reclaim some disk space or perform a “fresh” build,
you can delete all these directories by running:

$ bazelisk clean

This resets the entire build, requiring Bazel to re-download all the
various dependencies. Building after running this command may
take some time.

Using bazelrc for Build Options

When calling Bazel commands, you can pass in additional build
flags known as options. For example, to view a detailed failure log,
you can pass the --verbose_failures option. This is useful for
debugging build issues:

$ bazelisk build //main:hello-world --verbose_failures

The .bazelrc file is a configuration file designed to hold all your vari-
ous build options. This file is just a regular text file that processes
options line by line. Empty lines are ignored. If you want to add a
comment, precede it with the # character.

Bazel Quick Start | 15

This file can exist in many places depending on the platform. For
system-wide configurations, place it in the following locations:

o macOS/Linux/Unix: /etc/bazel.bazelrc

« Windows: %ProgramData%\bazel.bazelrc

For user-specific options, place the configuration file in your home
directory:

o macOS/Linux/Unix: $HOME/.bazelrc

o Windows: %USERPROFILE%\.bazelrc if it exists, or else
%HOME%/.bazelrc

You can also place a module-specific .bazelrc file in your module
directory. A module-level file is an ideal way to commit your
options to source control solutions.

When using multiple configuration files, Bazel will evaluate them in
the following order: system, module, home, user-specific. Options
are combined and in the case of a conflict, the latter option over-
rides the former.

Bazelisk also provides its own configuration file. Simply place
a .bazeliskrc configuration file in the root directory of your module.
This file uses specific Bazelisk options. For example, to set the Bazel
version, youd add the following:

USE_BAZEL_VERSION=8.2.1

With this file in place, Bazelisk will download the Bazel version
specified. Bazelisk also provides lots of additional configuration
options, which you can see in the Bazelisk official documentation.

16 | Extending Bazelto Its Full Potential

https://oreil.ly/9oOtF

The Lifecycle of a Bazel Build

Every Bazel build executes as part of a three-part, phased process, as
illustrated in Figure 4.

BUILD RULE \/ \/
0 Sty
00

ACTION(S) ACTION(S)

Loading]—P[Analysis —P[Execution

Figure 4. Phases executed for every Bazel build

The initial phase is called the loading phase. Its main purpose is to
parse, evaluate, and cache the contents of all BUILD files defined
for a project, including all targets and their dependencies. Any issue
during this process—for example, if a BUILD file doesn't contain
the correct notation of a rule or tries to call a function that doesn’t
exist—will cause the build to fail.

The next phase, the analysis phase, is responsible for constructing
the build execution graph, implemented as a directed acyclic graph.
The build execution graph consists of actions created by targets
and formalizes their order of execution. Actions are responsible for
generating the outputs we talked about before. The build can fail in
this phase as well (e.g., if rule types don’t match).

Lastly, the execution phase takes care of executing the actions. The
build fails if any one of the actions cannot perform its work.

That’s it from the perspective of a high-level view. There’s definitely
more to be said about the intricate details of each lifecycle phase;
however, we won't drill any deeper here. You can read up on addi-
tional aspects in the Bazel user documentation.

For many developers, their IDE of choice is their primary inter-
action with the source code and the compiler. The build usually
already has all the information to perform more advanced automa-
tion processes, which can be derived from the IDE. The next section
will give a short overview of Bazel’s integration with popular IDEs.

Bazel Quick Start | 17

https://oreil.ly/lA68j
https://oreil.ly/D6vLB

Driving Bazel from the IDE

The Bazel team maintains three IDE integrations as open source
projects that are used internally at Google. There is a single plug-in
that supports Intelli], Android Studio, and CLion. There are addi-
tional integrations for Xcode, Visual Studio Code, Visual Studio, and
lots of others. Bazel also provides instructions for writing your own
integration.

For the purpose of demonstrating the functionality, we'll walk
through opening the “Hello World” project in Intelli] and touch
on some of the features.

First things first: youll have to install the plug-in in Intelli]. The
plug-in does not require the commercial version of IntelliJ; you can
simply go with the Community Edition. Open the menu option
Intelli] IDEA > Preferences > Plugins and type in the search term
“Bazel” Figure 5 shows the installed plug-in after you restart the
IDE.

(N) Welcome to IntelliJ IDEA
Marketplace Installed o]
IntelliJ IDEA
2025.1.1.1
Q- bazel X Build
R Search Results (5) Sort By: Relevance - Bazel for IntelliJ
Bazel for IntelliJ Google Plugin homepage 7
Kotlin Notebooks w
4 1.5M Y 3.40 2025.04.29.0.1-api-version-: N " N
. Disable | v 2025.04.29.0.1-api-version-251
Customize
Plugins \Q Bazel (EAP) Install Overview ~ What'sNew Reviews Additional Info

4 212K ¥r4.74 JetBrains sr.o.

Lo Bazel project support. Features:

CCI: Maven2Bazel

$5.4K £3.85 qinggingziin « Import BUILD files into the IDE.

« BUILD file custom language support.

+ Support for Bazel run configurations for certain rule
4=| Build Server Protocol (... Install
classes.

=0 112k 475 Jetbrains s.ro.

Figure 5. Installation of the Bazel plug-in for Intelli]

After installing the plug-in, you should see the option “Import Bazel
project” when trying to open a new project. Select that option and
point it to the root directory of your project. Intelli] will analyze
the project structure and derive all the necessary information from
the build (e.g., source directories and dependencies). The imported
project for our “Hello World” example is shown in Figure 6.

18 | Extending Bazelto Its Full Potential

https://ij.bazel.build
https://oreil.ly/p-PyT
https://oreil.ly/bwGel

[] S stagel %2 main

3 Project v

-o- v [Qgstagel
> [D.idea
3 > [.ijwb
[7 bazel-bin
5] > [7bazel-out
> [7bazel-stagel
[7 bazel-testlogs
v [£Dmain
4 BUILD
= hello-world.cc
> [23 termcolor
MODULE.bazel
= MODULE.bazel.lock
M{ README.md
[7] staael.iml

Bazel Sync

v+ Importing stage1 Finishec
v Initial directory t <1 sec

> + Sync 1 shard cor 12 sec

T OO0 €

Ostagel > main > & BUILD

¢

Hello World
& [/main/BUILD x Q
1 A v
| a3 C‘—El

2 [> cc_binary(

(2 N
—

name = "hello-world",
srcs = ["hello-world.cc"],

main/BUILD (modified)
main/hello-world.cc (modified)
(and 3 more)

19:24:16
19:24:16
19:24:16
19:24:29

Initial directory update started
Initial directory update finished
Sync started
Sync finished

4:31 LF UTF-8 4spaces

Figure 6. Imported Bazel project in Intelli]

Figure 6 reveals the main integration points with Bazel. The Bazel
Sync panel shows the current status of Intelli], matching the IDE
project structure with the Bazel structure. The Bazel Console panel
shows the output of a build ccexecution, which you can trigger by

clicking the little Bazel icon in the top-right corner of the window.
One of the most compelling reasons for using an IDE is the auto-
completion feature. Figure 7 shows an example of the autocomple-
tion pop up in the context of a cc_binary rule.

Bazel Quick Start |

19

& [/main/BUILD x Q

| SR
> cc_binary(
name = "hello-world",
srcs = ["hello-world.cc"],
5 l deps|
® deps

® dynamic_deps
® reexport_deps
® $deps_analyzed_by_graph_structure_aspect

Press ~. to choose the selected (or first) suggestion and insert a ¢

Figure 7. Autocompletion for Bazel build functionality in Intelli]

This concludes our condensed introduction to Bazel. You should
have learned everything you need to know to get started using Bazel
in your own projects. It’s very possible that you are not writing C++
code—maybe you need to build Java code, Go projects, or mobile
applications. The Bazel website offers a wide range of hands-on
tutorials to guide you. In an upcoming section, you'll see a Java
project in action.

Granted, enterprise projects have far more complex requirements.
In the next couple of sections, we'll dive deeper into the Bazel
toolbox.

Dependency Management

Dependency management is a crucial feature of every build tool.
Without it, you wouldn’t be able to define compile-time dependen-
cies on other packages, on libraries hosted in an external repository,
or on projects in a different workspace. The next sections will touch
on two of those dependency types in more detail. Take a look at the
Bazel user documentation for a more detailed discussion of what’s
possible in Bazel in the realm of dependency management.

Modeling Fine-Grained Package Granularity
and Dependencies

I mentioned earlier that you can break down your project source by
packages in Bazel-speak. So far we've modeled only a single package,

20 | Extending Bazel to Its Full Potential

https://bazel.build/start/cpp
https://bazel.build/start/cpp
https://oreil.ly/Nd-DG

which simply pointed to all the source code found in a specific
subdirectory.

One of Bazels benefits is that you can define packages in a very
fine-grained way, even to the level of a single source file per package.
If they’re structured properly, you’ll be able to execute many of those
packages in parallel or farm out the work as part of the distributed

build.

In our current example, we build a binary that can be launched
from the command line. We may also want to package some of our
supporting code in a library. For instance, we may want to add some
console coloring to the mix.

For each of the packages, we need to add a new BUILD file. We
already have a BUILD file for the HelloWorld package. If you are
following along by making these changes on your machine, you
should end up with the following project structure:

}— MoDULE
L— HelloWorld
L— main
L— BUILD
L— hello-world.cc
L— termcolor
L— BUILD
L— termcolor.hpp

You can add the termcolor.hpp library from the repository for
this report. Update hello-world.cc with the bolded code as shown in
Example 1-2.

Example 1-2. Modifying the hello-world.cc script

#include <ctime>

#include <string>

#include <iostream>

#include "termcolor/termcolor.hpp"

int main(int argc, char** argv) {
std::string who = "world";
if (argc > 1) {
who = argv[1];
}
std::cout << termcolor::red << get_greet(who) << std::endl;
print_localtime();
return 0;

Dependency Management | 21

Next up, we'll edit the BUILD files of the packages. Example 1-3
shows the contents of the BUILD file in the termcolor package.

Example 1-3. Adding instructions to the new BUILD file
cc_library(@

name = "termcolor", @

hdrs = ["termcolor.hpp"], ©

visibility = ["//visibility:public",] @
)

Here is the line-by-line breakdown:

@ This is a new rule designed for creating C++ libraries. As stated
in the rule documentation, the result is an .so, .lo, or .a file.

@ This is the name of the target.

©

This passes the headers to the library.

O This defines the visibility of the library. Bazel requires a build
author to be explicit about the visibility of targets across multi-
ple packages. By default, a target can only “see” other targets of
the same BUILD file

Finally, you need to update your other BUILD file as shown in
Example 1-4.

Example 1-4. Updating your BUILD file for the previous hello-world
target

cc_binary(
name = "hello-world",
srcs = ["hello-world.cc"],

deps = ["//termcolor:termcolor"] @

)

© The deps parameter receives a list of dependencies. In this case,
p p
you pass in the dependency target.

Executing the build with the same command we used before will
resolve the package dependency properly, compile the code, and
create an executable JAR file that runs the hello-world application:

22 | Extending Bazel to Its Full Potential

$ bazelisk build //main:hello-world

INFO: Analyzed target //main:hello-world (1 packages loaded,

3 targets configured).

INFO: Found 1 target...

Target //main:hello-world up-to-date:
bazel-bin/main/hello-world

INFO: Elapsed time: 1.077s, Critical Path: 0.95s

INFO: 10 processes: 8 internal, 2 darwin-sandbox.

INFO: Build completed successfully, 10 total actions

Modeling package dependencies may seem tedious in the beginning
but will feel natural after a while. There’s a comfort in knowing the
exact relationship between your packages, which will ultimately lead
to better structured code with high cohesion and low coupling.

You do not want to write every aspect of your application yourself.
For example, it's unlikely that you’ll want to write code for parsing
JavaScript Object Notation (JSON) or the low-level details of HTTP
communication. Oftentimes, we rely on the code other people wrote
and distributed as external dependencies. External dependencies
usually reside in repositories, such as a Git repository containing the
source code or a binary repository hosting the artifacts produced
by a build (e.g., a JAR file). In the next section, we'll talk about
declaring and consuming external dependencies in your build.

Declaring and Using External Dependencies

Bazel provides external dependency support through the Bazel Cen-
tral Registry (BCR). The BCR is a vendor-neutral repository for a
variety of modules built by Bazel. Bazel users are encouraged to
submit modules to the registry. As it grows, developers can easily
incorporate a third-party dependency into their project with little
work.

When using a module, Bazel will analyze the dependency graph and
fetch related libraries from the registry. This includes both direct
dependencies and transitive dependencies.

Bazel manages the entire dependency graph. During a build action,
Bazel will order the dependencies to avoid loading order issues as
well as the diamond dependency problem. If two or more separate
dependencies rely on the same dependency but with different ver-
sions, Bazel will try to resolve this issue by using the latest minor
version that satisfies both requirements. In the case that Bazel does

Dependency Management | 23

https://oreil.ly/exQU3

not, you will need to specify dependency version to Bazel by adding
an override in the MODULE file.

The BCR provides a nice web frontend for exploring all the vari-
ous dependencies that contribute to a module. When you specify
a module to a project, you also provide a version number. This
version declares various dependencies that are also modules. Bazel
assembles the dependency graph and downloads the necessary code
from the appropriate repositories.

Here’s a new simple project that incorporates an external depend-
ency. Your directory should look like the following:

}— MoDULE
L— JSONText
L— src
L— BUILD
L— main.cpp

This is a simple console application that prints out JSON text to the
console. Example 1-5 shows the source code for this application.

Example 1-5. A simple console application that formats JSON

#include <iostream>
#include <string>
#include <vector>
#include <nlohmann/json.hpp>
using json = nlohmann::json;
int main() {
json jsonText;
jsonText["name"] = "My Bazel App (Bzlmod)";
jsonText["version"] = 1.0;
jsonText["features"] = json::array({"Simple", "Uses JSON",
"Console Output", "Bzlmod"});
std::string pretty_json_string = jsonText.dump(4);
std::cout << "Successfully created JSON object:" << std::endl;
std::cout << pretty_json_string << std::endl;
std::cout << "\nAccessing a value: App Name = " <<
jsonText["name"].get<std::string>() << std::endl;
return 0;

}

This dependency uses a compiled header for all the imported code.
Now you need to add the dependency to your MODULE file. The
project page in the BCR shows how to do this (see Figure 8).

24 | Extending Bazel to Its Full Potential

nlohmann_json s1.3.ber1

Install

Metadata
To start using this module, make sure you have set up Bzlmod according to the user guide, and add
the following to your MODULE. baze file: Homepage
https://
bazel_dep(name = "nlohmann_json", version = "3.11.3.bcr.1") @ 9github.com/
nlohmann/json
Read the Release Notes Maintainers
. o B 0) Keith
Version history Smiley
3.11.3.ber1 view registry source
compatibility level 1 published 6 months ago

Figure 8. The official BCR page for the nlohmann_json module

You simply add the highlighted code to your MODULE file. It
should look as follows:

bazel_dep(name = "nlohmann_json", version = "3.11.3.bcr.1")

The bazel_dep method takes a name and a version number. The
name is the critical piece of information because there are times
you’ll want to refer to this name in your build files. Bazel lets us use
this name as a label: by adding an @ before the name, you can refer
to this repository. This is known as an apparent name.

You can also specify the full name that combines the repository
name, package, and target. This is known as the canonical name,
and it starts with double @s. For example: @@myrepo//my/app/
main:app_binary

Here is the BUILD file that uses this dependency:

cc_binary(

name = "app",

srcs = ["main.cpp"],

deps = ["@nlohmann_json//:json",], @
)

@ The deps parameter now refers to an external repository.

The BCR makes it easy to incorporate third-party dependencies into
your project. You can also incorporate your own project in the BCR.
The Bazel team provides instructions on how to add your project.
There are many steps, but once your project has been approved, it
can be added as a dependency for other projects.

Dependency Management | 25

Unfortunately, not every dependency can be found in the BCR. In
these cases, you need to write your own custom extension code, as
you’'ll see later in this report.

Incorporating Third-Party Package
Managers like Maven

While it is clear that Bazel would prefer that the BCR be the primary
means for dependency management, Bazel works well with other
package managers. Each set of rules provides functions for using
an associated package manager. For example, rules_swift declares
functions for interacting with the Swift Package Manager.

To follow along, we've included a new Java project in the example
repository, which includes two external Maven dependencies. Here
is the structure of the Java example:

}— MoDUuLE

|

|

| L— example

| }—messenger

| | — BUILD
|

|

|

| L— Messenger.java

}— BUILD

L— HelloWor1ld.java

L— example
L— messenger

}— BUILD

L MessengerTest. java
Messenger.java is a Java library that prints out some simple text
to the console. HelloWorld.java puts the library to use. Finally,
MessengerTest.java is a simple unit test. We will handle the unit
test in the following section.

First, add the following code to the MODULE file:

bazel_dep(name = "rules_jvm_external", version = "6.7")
maven = use_extension("@rules_jvm_external//:extensions.bzl",
"maven") @
maven.install(@
artifacts = [

26 | Extending Bazel to Its Full Potential

"Org.apache.commons:commons-lang3:3.9",
"junit:junit:4.12"
1,
repositories = [
"https://repol.maven.org/maven2",
1
)

use_repo(maven, "maven") ©

© The use_extension() function is a built-in Bazel function. In
this case, it loads all the extensions provided by the JVM rules.

©® The maven_install() function is used to fetch the dependen-
cies from repositories. In this case, Maven is fetching two
dependencies from the Maven central repository.

© The use_repo() function allows the repository to be used in the
current module scope.

As you can see, our code requires the dependency Apache Com-
mons Lang version 3.9. For Bazel to resolve the dependency, you
need to provide its group, artifact ID, and version (GAV). If you are a
JVM developer, you've probably used this notation before. Each por-
tion of the dependency declaration org.apache.commons : commons-
lang3:3.9 is separated by a colon.

At runtime, Bazel reads the dependency information from the
MODULE file, looks up artifacts in the list of declared repositories,
downloads the artifacts, and then uses them in the build for specific
tasks (e.g., compilation or test execution).

At this point, you can incorporate your Maven dependencies into
your BUILD files. Here is the BUILD file for the Messenger library:

java_library(@
name = "messenger-1lib",
srcs = ["Messenger.java"],
visibility = [
"//src/main/java/com/example:__pkg__",
1,
deps = [
"@maven//:org_apache_commons_commons_lang3" @
]!
)

@ Creating a Java library is almost the same as creating a C++
library.

Dependency Management | 27

® The dependency is now referencing the Maven dependency
declared in the MODULE file.

That’s it. Now you just have to run the build target. Bazel will auto-
matically resolve and download external dependencies. Of course,
if the dependency has been downloaded before, it will simply be
reused from the local cache.

I hope you are writing tests alongside your application code and
running them to verify its correct behavior. Bazel can execute tests
from the build. You'll find that we are building upon the knowledge
from the previous sections to make that happen.

Executing Automated Tests

The Java rule set also includes a rule for compiling and executing
test source code named java_test. The way you model the package
is very similar to what we've done before. First, we'll create the Java
test code in the source directory src/test/java. The test class Messen
gerTest. java uses the API of the test framework JUnit 4. Next, we'll
create a BUILD file for that package. Your project structure should
end up as follows:
}— MoDULE
— src

— main

| L— java

| — ...

L— test
I_ .

L— example
L— messenger

}— BUILD

L— MessengerTest.java

Let’s also populate the contents of the new BUILD file. Example 1-6
creates the test rule with the name messenger-test.

28 | Extending Bazel to Its Full Potential

https://oreil.ly/V6lEz

Example 1-6. Defining a unit test that includes library dependency

java_test(

name = "messenger-test",

srcs = [
"MessengerTest.java"

1,

test_class = "com.example.messenger.MessengerTest",

deps = [
"//src/main/java/com/example/messenger:messenger-1ib",

1,

)

The test function looks similar to existing functions. The big differ-
ence is both the name and the test_class parameter.

To run the test, use the test command and specify the target’s name:

$ bazelisk test messenger-test

INFO: Analyzed target //src/test/java/com/example/messenger:
messenger -test.

INFO: Found 1 test target...

INFO: Build completed successfully, 8 total actions
//src/test/java/com/example/messenger:messenger-test

This command runs the messenger-test unit test. If the test fails,
Bazel will provide a link to the appropriate log file.

By default, Bazel uses JUnit 4. At this point, JUnit 4 is somewhat
old. Thankfully, you can use JUnit 5 instead. Example 1-7 shows the
MODULE file updated to take advantage of JUnit 5.

Example 1-7. A MODULE file that uses JUnit 5 functionality

JUNIT_JUPITER_VERSION = "5.13.0-M2" @
JUNIT_PLATFORM_VERSION = "1.13.0-M2"

bazel_dep(name = "rules_jvm_external", version = "6.7")
bazel_dep(name = "contrib_rules_jvm", version = "0.28.0")
maven = use_extension("@rules_jvm_external//:extensions.bzl",
"maven"
maven.install(
artifacts = [
"org.apache.commons:commons-lang3:3.9",
"org.junit.platform:junit-platform-Tlauncher:%s"
% JUNIT_PLATFORM_VERSION, @
"org.junit.platform:junit-platform-reporting:%s"
% JUNIT_PLATFORM_VERSION,
"org.junit.jupiter:junit-jupiter-api:%s"

Executing Automated Tests | 29

% JUNIT_JUPITER_VERSION,
"org.junit.jupiter:junit-jupiter-engine:%s"
% JUNIT_JUPITER_VERSION,
1,
repositories = [
"https://repol.maven.org/maven2",
]’
)

use_repo(maven, "maven")

@ Defines two constants for the JUnit 5 versions

@ The Maven dependencies using the defined constants

Naturally, youll need to update your BUILD file to incor-
porate JUnit 5. Example 1-8 shows the updated file using
junit_test_suite.

Example 1-8. A modified BUILD file that incorporates JUnit 5

load("@rules_jvm_external//:defs.bzl", "artifact") @
load("@contrib_rules_jvm//java:defs.bzl", "JUNIT5_DEPS",
"java_test_suite")
java_junit5_test(@
name = "messenger-test",
srcs = [
"MessengerTest. java"
]}
test_class = "com.example.messenger.MessengerTest",
deps = [
"//src/main/java/com/example/messenger:messenger-1ib",
artifact("org.junit.jupiter:junit-jupiter-api"),
artifact("org.junit.jupiter:junit-jupiter-engine"),
artifact("org.junit.platform:junit-platform-launcher"),
artifact("org.junit.platform:junit-platform-reporting")
]}
)

@ This incorporates a few dependencies that you'll use in your
BUILD file.

® java_junit5_test() is a JUnit 5 unit test. It's meant to be a
drop-in replacement for java_test().

The test case is launched using the same command as the previous
unit test only it will now use JUnit 5.

30 | Extending Bazel to Its Full Potential

Extending Bazel's Capabilities

Extensibility is one of Bazel's core capabilities. In this section, I'll
give you a first taste of the functionality, its possibilities, and some
code examples to demonstrate the concepts in action. We'll start by
talking about two concepts in theory—rules and macros.

Extension Concepts

To extend Bazel’s capabilities, we start by creating a new file with the
extension .bzl. This file can live anywhere in your project directory
or can be hosted on an HTTP server for wider exposure.

A rule represents the most powerful extension point in Bazel. It
has full control over Bazel’s internals, can configure other rules, and
introduces elaborate features that are complex in nature. You will
want to write a rule for nontrivial functionality. Think of it as a
plug-in for the Bazel ecosystem. As an example, the fully fledged Go
language support in Bazel has been written as a rule.

The other extension option is a macro. A macro is a good fit for
externalizing common functionality into a new, reusable function.
Its a means to better organize your build or to call a rule with
parameters you want to set by default. You will want to write a
macro if your build logic becomes too complex to maintain or to
avoid the copy-paste antipattern.

Rules are considered an advanced use case for Bazel and beyond
the needs of most users. If you need custom functionality, the Bazel
development team recommends that you first start with macros,
which should provide all the functionality you need.

When are macros and rules evaluated and executed during the
lifecycle phases of a Bazel build? Let’s revisit the lifecycle phases we
discussed earlier: macros are evaluated during the loading phase,
and rules are executed during the analysis phase. Consequently, you
cannot modify a macro once the build has left the loading phase.
Figure 9 shows how both concepts fit into the lifecycle.

Extending Bazel’s Capabilities | 31

https://oreil.ly/29-Zy
https://oreil.ly/29-Zy

Evaluate macro Execute rule

Figure 9. Evaluation of macros and rules in the lifecycle of a Bazel
build

Now you have a basic understanding of the extension concepts in
Bazel, but what language or syntax do you actually use to implement
them? To express build script logic as well as extension implementa-
tions, Bazel uses the language Starlark. Let’s take a closer look at it.

The Starlark Build Language

Technically, the Starlark language is based on Python 3. If youre
familiar with the Python language, you should be able to read and
write a Bazel build script and any of its extensions on a syntax level.

There are differences between Starlark and pure Python, though.
Starlark is more of a custom runtime and dialect of Python because
it introduces specific restrictions. For example, it cannot access
the filesystem, network, or system clock. Moreover, mutability and
access to the standard Python library is limited. For instance, an
array is mutable in the current file’s execution scope, but beyond that
file, the array is immutable.

The main reason for limiting the available functionality is to achieve
optimal build execution performance by supporting parallel and
remote execution and to allow multithreaded processing of build
logic.

In practice, you will interact with a custom API when implementing
macros or rules. We'll learn how to use Starlark in the following
sections by writing a custom macro and rule.

Writing a Macro by Example

In the previous section, you saw how to incorporate JUnit 5 into a
Java project. This was a custom function designed to complement
existing rules. The java_junit5_test was developed by the Bazel

32 | Extending Bazel to Its Full Potential

https://oreil.ly/JDnDW

community. In this upcoming example, you'll define your own JUnit
5 unit test by way of a macro.

Macros are best organized into their own package, somewhat sepa-
rate from the actual application source code. For that purpose, we'll
create a new directory named macros. We'll place a BUILD file to
model a package and the macro file, which we’ll name junit5.bzl, in
there. The result should look as follows:

}— MoDULE
}— macros
| | BUILD

| L— junit5.bzl
L— src

I_-.-

For macros, it's not required to populate the BUILD file with
instructions, so we'll just leave it empty. It merely acts as an indi-
cator that were modeling a package here. A macro is basically a
function that can instantiate and configure rules, which is exactly
what we are planning to do here. Example 1-9 implements such a
function; it ingests a list of parameters, massages them, and then
creates a java_test rule with the appropriate parameters. You can
also see that it sets up the JUnit 5 dependencies without having to
declare them repeatedly for every single test package.

Example 1-9. A macro to make it easier to include JUnit 5 unit test
cases

def java_junit5_test(name, srcs, test_package, deps = [],
runtime_deps = [], **kwargs): @
FILTER_KWARGS = [
"main_class",
"use_testrunner",
"args",

for arg in FILTER_KWARGS:
if arg in kwargs.keys():
kwargs.pop(arg)

junit_console_args = []
if test_package:

junit_console_args += ["--select-package", test_package]
else:

fail("must specify 'test_package'")

native.java_test(@

Extending Bazel’s Capabilities | 33

name = name,

Srcs = srcs,

use_testrunner = False,

main_class = "org.junit.platform.console.ConsoleLauncher",

args = junit_console_args,

deps = deps + [
"@maven//:org_junit_jupiter_junit_jupiter_api",
"@maven//:org_junit_jupiter_junit_jupiter_engine"

1,

runtime_deps = runtime_deps + [
"@maven//:org_junit_platform_junit_platform_console"

1,

**kwargs

@ Defines the macro, including the expected parameters and
default values

@ Calls the built-in, “native” rule named java_test and config-
ures it

With the goal of reusability and encapsulation achieved, we can
move on to loading and using the macro. The existing BUILD file
of our test package can simply reference the macro and use it as
if it were a built-in function provided by the Bazel runtime. Exam-
ple 1-10 shows the revised BUILD file.

Example 1-10. Calling the custom macro in the BUILD file
load("//macros:junit5.bz1", "java_junit5_test") @

java_junit5_test(@

name = "messenger-test",

srcs = [
"MessengerTest. java"

1,

test_package = "com.bmuschko.messenger",

deps = [
"//src/main/java/com/bmuschko/messenger:messenger-1ib"

1

@ Loads the macro with the appropriate package

@ Calls the macro and configures it

34 | Extending Bazel to Its Full Potential

While we didnt inspect every single implementation detail, I think
it’s clear that macros can help quite a bit with code maintenance.

Building Beyond Your Local Machine

As you've seen, Bazel provides a way to build software that’s correct,
fast, and reproducible. You truly unlock Bazel’s flexibility and power
once you incorporate it in a network or cloud-based environment.
Using the RBE protocol built into Bazel, multiple developers can
share the same build target as well as other artifacts produced by
other developers. This can dramatically speed up your build times.

While Bazel provides the protocol for multiple build machines, it
is up to the build or platform team to provide the backend infra-
structure and configure the machines to communicate with each
other. This takes time, people, expertise, and patience. Thankfully,
the Bazel community has many solutions that do the hard work for
you.

Introducing Nativelink

Trace Machina released its open source Nativelink platform as a way
to provide remote execution, caching, and building over a scalable
cloud-based service or distributed on-premises network instead of a
local machine.

Nativelink gives you the power of Bazel to efficiently support large
and complex builds, without the headaches of configuring and
maintaining your own custom build infrastructure.

In particular, Nativelink handles the complexity of orchestrating
builds and tests, scheduling the most cost-effective resources on
which to run them, and updating the shared cache. Developers
access the platform from their IDEs using any client-side build tool
that supports the RBE protocol, including Bazel, Buck2, Pantsbuild,
and Siso. This allows Nativelink to intercept tasks and route them
to the optimal resources. For example, Bazel may route resources to
various cores on a machine, like an air traffic controller assigning
runways. Nativelink manages resources among different machines
on a network or in a cloud environment. You can think of this as a
regional controller directing flights between different airports based
on current usage and priority.

Building Beyond Your Local Machine | 35

https://oreil.ly/cVXkF

Nativelink also reduces computing costs by automatically running
compiler tasks on standard CPUs while scheduling specialized ML
(machine learning) training tasks for GPUs, for example. You can
even take advantage of AWS (Amazon Web Services) spot instan-
ces, which allow you to purchase unused EC2 (Elastic Cloud Com-
pute) capacity at significantly reduced prices—up to 90% oft the
on-demand rate.

Nativelink is written entirely in the Rust programming language,
leveraging its memory safety model and taking advantage of Rust’s
latest concurrency features of async-awatit. This allows simulation
tests to run fast, reliably, and natively—hence the name. Tests can
be run on a diverse range of target platforms, which may have limi-
ted resources, such as embedded and Al-enabled devices, without
requiring virtualization or runtime layers that can add latency, pro-
ducing inconsistent or unpredictable results.

Trace Machina also offers a cloud service called Nativelink Cloud,
which provides an auto-scaling infrastructure, built-in security and
observability, and an intuitive web interface to track build history,
cache hits, and generated artifacts. Figure 10 is a screenshot of the
Nativelink dashboard. It can also be installed on premises, and is
installable with a Helm chart.

& https://app.nativeli

nativelink Dashboard

Dashboard &2

Remote Cache Hit Ratio (%)

Recent Builds Remote Cache Usage

Ingress: 32.9 GB / =

Egress: 104.5GB /178

Figure 10. The Nativelink Cloud dashboard

36 | Extending Bazel to Its Full Potential

Nativelink Cloud takes build performance to a new level. For
instance, a typical build of Chromium may take one or more hours
of compilation time. With Nativelink Cloud, you can expand the
number of CPU resources, shrinking the entire build from hours
to minutes. All this takes is some additional configuration to use
Nativelink as described in the official documentation.

Nativelink Cloud is free for individuals, open source projects, and
cloud production environments, with support for unlimited team
members.

Executing Bazel Projects on CI/CD Platforms

In the spirit of continuous delivery, organizations need to ship soft-
ware fast and frequently without sacrificing quality, safety, or secu-
rity. In practice, that means building and testing the code multiple
times a day, not only on developer machines but as part of a CI envi-
ronment. This is especially important for safety-critical devices, such
as autonomous vehicles and robots, which require multiple levels
of testing on a more frequent basis, including unit tests, subsystem
tests, and system-wide tests.

Slow builds, failed builds, inconsistent test results, and lack of pre-
dictability impact your team’s ability to deliver the latest features
or bug fixes to your customers, but they also negatively impact the
developer experience.

Bazel uses a remote cache of generated artifacts and builds only
changed packages, so builds take a shorter amount of time than with
traditional build tools. Bazel will also cache test results. This may
or may not be ideal, especially in the case of fickle results, so Bazel
provides a - -cache_test_results flag that enables you to fine tune
the caching behavior. There is also a --runs_per_test flag that
will rerun a series of tests a specific number of times: if any of those
repeated tests fail, the entire test case is considered a failure.

Nativelink provides out-of-the-box integration with all popular
CI/CD platforms, including GitHub Actions, and allows you to
provision your own infrastructure, whether it’s located on premises
or in the cloud. See the documentation for instructions on how to
incorporate Nativelink Cloud into your CI/CD workflow.

Building Beyond Your Local Machine | 37

https://oreil.ly/W7wr3
https://oreil.ly/Uub3f

Remote Execution and Remote Caching

Bazel offers two solutions that can help with achieving the goals of
build avoidance and build scalability, while at the same time keeping
the promise of consistency and correctness (see Figure 11):

Remote execution
Remote execution offloads build execution to high-performance
computing in a datacenter or cloud provider, then uses those
results on the originating build machine.

Remote caching
Remote caching involves sharing and reusing build results
across multiple, physically separate machines (e.g., developer
machines and CI infrastructure).

Remote cache

Remote execution
Clagents

Clagent
: Datacenter or the cloud Send 8

workload
‘ Recelve
result

Send | Receive
workload | result

Developer machine

Developer machines

Figure 11. Moving parts of remote execution and remote caching with
Bazel

With those basic definitions out of the way, let’s dive into a high-
level discussion of both concepts. While we cannot walk through
all the intricate details, I'll provide pointers on how to incorporate
remote execution and remote caching into your own Bazel projects.

Builds can be very demanding when it comes to consuming hard-
ware resources. It's not uncommon to end up with a completely
overloaded machine while compiling code or executing tests. What
can we do in the meantime? Check X on our phones? Wouldn't it be
great if you could instead offload the work to other machines? That’s
where remote build execution comes into play.

Bazel can be configured to execute build or test actions in the cloud.
Depending on the available hardware resources on the receiving

38 | Extending Bazel to Its Full Potential

end, you will end up with a much faster and potentially more relia-
ble build because you don't need to depend on the sandbox of your
local machine.

Various remote execution services have evolved over time. Among
them are open source, self-hosted solutions like Buildbarn, Build-
farm, BuildGrid, and Scoop, as well as Google’s commercial offering,
Cloud Build. This report won't go into depth on creating and using a
multinode build farm to avoid going into all the details specific to a
particular solution.

The idea of remote caching is to share build outputs across multiple
machines that invoke a Bazel build. If a build output has already
been produced for certain inputs of an action, then you can simply
reuse that output without having to actually execute its actions.

Let’s illustrate this functionality with the help of an example. Say
you have two different teams working on the same project across
geographically separate locations. One team resides in the US, the
other in Asia. Considering the difference in time zones, the Asia
team starts its day before the US team. In the course of the day, the
Asia team executes a Bazel build and produces build outputs. Hours
later, the US team comes online. As soon as it starts executing its
builds, the US team will likely be able to reuse some of the existing
build outputs, which leads to faster builds in most situations.

The central piece of the architecture is a server that acts as an entry
point and storage facility for build outputs. Bazel offers various
options, some of which are one-stop solutions:

« An nginx server that acts as a cache but requires manual
configuration

 Bazel-remote, the open source remote build cache built by
Google

o A fully managed build cache and remote execution system via
Nativelink Cloud

It’s up to your organization to pick the solution that’s best suited to
your needs.

Building Beyond Your Local Machine | 39

https://oreil.ly/50KbE
https://oreil.ly/-6Mo9
https://oreil.ly/0XSUW

Parallelism

Bazel takes advantage of large infrastructure. It is built from the
ground up to not just take advantage of multi-core CPUs, but to
utilize clusters of compute resources to accelerate builds. During the
analysis stage of a build, Bazel will examine the dependency graph
to determine what needs to be built, along with all the resources
for the build. Build tasks are then distributed throughout the entire
network, taking advantage of any cache.

Bazel is also ideally suited for a cloud-based infrastructure, allowing
you to scale up your build to the number of machines available to
you.

Containers

Bazel works hand in hand with Docker. To demonstrate the build
cache functionality, we'll set up bazel-remote as a Docker container.
You can retrieve the Docker image for bazel-remote from Docker
Hub. Open your terminal and enter the following:

$ docker pull buchgr/bazel-remote-cache

To ensure that the container can persist the cached data, we'll
mount a volume represented by a path on our local disk. For
now, the volume mount path is /Users/YOUR_USER_NAME/exam-
ple/dev/bazel-cache. Make sure to create the directory before starting
the container. The following command starts the build cache server
in a container, maps port 8080 to 9090, and mounts the volume:

$ docker run -v /Users/bmoakley/example/dev/bazel-cache:/data
-p 9090:8080 buchgr/bazel-remote-cache -max_size 109
2025/04/24 17:48:16 Loaded 0 existing disk cache items.

Initially, the cache directory will be empty. You'll have to use the
command-line option --remote-cache to tell Bazel about the exis-
tence of the remote cache. The following Bazel invocation executes
the tests of our example project and populates the cache with build
outputs:

$ bazel test --remote_cache=http://localhost:9090
//src/test/java/com/example/messenger:messenger-test

//src/test/java/com/example/messenger:messenger-test
PASSED in 0.4s
Executed 1 out of 1 test: 1 test passes.

40 | Extending Bazel to Its Full Potential

https://oreil.ly/NNfpd

Earlier, we started the build cache container in foreground mode,
which is the default. This mode is convenient for inspecting log
messages; however, if you plan to set up the build cache in a pro-
duction environment, you should run in detached mode (with the
--detach or -d flag) instead:

$ docker run -d -v /Users/bmoakley/example/dev/bazel-cache:
/data -p 9090:8080 buchgr/bazel-remote-cache -max_size 109

The log messages now indicate that Bazel is looking for existing
build outputs but can’t find them (indicated by the HTTP GET 404
status code). As a result, Bazel populates the cache with the result we
just produced (indicated by the PUT 200 status code):

2025/04/24 17:48:55 GET 404 172.17.0.1 /ac/06f08c1047e4
a6c53e5202724b7abe8cd3a633463de28d66544aaa77292cda70
2025/04/24 17:48:55 GET 404 172.17.0.1 /ac/0a317cb909b6
273627720a96fd954080ddfe6e0052ce525551e60fa4bd37b5a0
2025/04/24 17:48:55 GET 404 172.17.0.1 /ac/46af73a1541c
d9322acd2f8b6fd3a76634c0e67d448636a7540810542bfdelc4
2025/04/24 17:48:55 GET 404 172.17.0.1 /ac/efccd560dcca
7935b5f9e15aab4dabb536653324a741dee2a7f5364a942bdff6
2025/04/24 17:48:55 GET 404 172.17.0.1 /ac/66005e46cb37
ac52b6bacaf8654b4ef7b3c9aab38391ab9dbof96969df8d5d90
2025/04/24 17:48:55 PUT 200 172.17.0.1 /cas/e74e18475fa
864bf5aa5b60512c86bbb08619cf3ae8443394105c012ad523fd2
2025/04/24 17:48:55 PUT 200 172.17.0.1 /cas/e3b0c44298f
c1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
2025/04/24 17:48:55 PUT 200 172.17.0.1 /cas/bd19f26dc7b
acb77e659b82e4582097d15fb27f20fbd0545fe11396490728c7a
2025/04/24 17:48:55 PUT 200 172.17.0.1 /cas/0a317cb909b
6273627720a96fd954080ddfe6e0052ce525551e60fad4bd37b5a0
2025/04/24 17:48:55 PUT 200 172.17.0.1 /cas/00afd170b3e
Cc8a4408292d894af328d212705a0180575a3fb61172091137d816

Now, lets run the build with the same command again and observe
the difference. In the output, you can see that the build outputs for
the tests were reused from the cache. Bazel flags the target with the
cached marker:

$ bazel test --remote_cache=http://localhost:9090

//src/test/java/com/example/messenger:messenger-test

//src/test/java/com/example/messenger:messenger-test
(cached) PASSED in 0.4s

Executed 0 out of 1 test: 1 test passes.

Building Beyond Your Local Machine | 41

https://oreil.ly/W6zC2

To cross-check the expected behavior, you can also inspect the new
log messages on the build cache container. The GET 200 status code
indicates that existing build outputs could be reused:

2025/04/24 17:52:24 GET 200 172.17.0.1 /ac/06f08c1047e4
a6c5ae5202724b7abe8cd3a633463de28d66544aaa77292cda70
2025/04/24 17:52:24 GET 200 172.17.0.1 /ac/66005e46cb37
ac52b6bac4f8654b4ef7b3c9aab38391ab9dbof96969df8d5d90
2025/04/24 17:52:24 GET 200 172.17.0.1 /ac/0a317cb909b6
273627720a96fd954080ddfe6e0052ce525551e60fa4bd37b5a0
2025/04/24 17:52:24 GET 200 172.17.0.1 /ac/46af73a1541c
d9322acd2f8b6fd3a76634c0e67d448636a7540810542bfdelcs
2025/04/24 17:52:24 GET 200 172.17.0.1 /ac/efccd560dcca
7935b5f9e15aab4dabb536653324a741dee2a7f5364a942bdff6
2025/04/24 17:52:24 GET 200 172.17.0.1 /cas/e74e18475fa
864bf5aa5b60512c86bbb08619cf3ae8443394105c012ad523fd2
2025/04/24 17:52:24 GET 200 172.17.0.1 /cas/9d20c5302dd
7b4a2166180fbda5e5656fb49ec7bc9d3da61759db0336c2c9feb

The build cache is tremendously helpful for implementing build
avoidance. It offers a number of operational modes and command-
line options to control the runtime behavior. At the time of writing,
the build cache does not offer a user interface or visualization option
to monitor performance trends over time. To use the build cache for
your own project, see the user documentation for more details.

Executing Simulations for Al-Powered
Chips and Devices

Google found other uses for Bazel's sandbox execution environment.
Beyond compiling code, Bazel plays a foundational role in building
the complex hardware and software stacks required for modern
AT chips and embedded systems. In Google’s internal semiconduc-
tor workflows—especially for projects like Tensor Processing Units
(TPUs) and edge AI chips—Bazel serves as the client interface for
managing source code, modeling dependencies, and driving builds
across a large and heterogeneous infrastructure.

Unlike traditional software builds, chip development requires
orchestrating simulation flows, hardware description language
(HDL) compilation, firmware generation, and cross-compilation
across different architectures. To meet these needs, Google extended
Bazel's capabilities through a powerful remote execution backend
called Forge, a high-performance, largely C++-based server built
internally to execute Bazel actions in a secure, scalable, and dis-
tributed environment.

42 | Extending Bazel to Its Full Potential

https://oreil.ly/ElVXF

In this model:

« Bazel operates purely as a deterministic client—managing local
build metadata and orchestrating build actions.

» Forge performs those actions remotely, including invoking
vendor-specific toolchains (e.g., Synopsys, Cadence, Ansys, or
custom GCC [GNU Compiler Collection] cross-compilers),
simulating hardware modules, and running verification tests
across large compute farms.

o These actions are sandboxed, fully reproducible, and
performance-optimized to scale with chip complexity.

For developers outside Google, Nativelink’s Rust implementation is
the closest open source equivalent to Forge. Nativelink provides
remote execution and caching features compatible with Bazels
Remote Execution API, allowing chip developers to offload builds
and simulations across data center infrastructure or cloud environ-
ments. When paired with a custom toolchain (e.g., a Nordic SDK
or ARM cross-compiler), this setup enables the same kind of struc-
tured and scalable development used internally at Google.

Advanced features in Nativelink, such as building for simulation
tools or building for exotic hardware, use Bazel as a frontend.
The BUILD file in Example 1-11 shows a rule targeting embedded
firmware.

Example 1-11. A BUILD rule for an ARM Cortex-M chip with
vendor-specific simulation tools

cc_binary(
name = "firmware",
srcs = ["main.c", "peripherals.c"],
copts = ["-mcpu=cortex-m4", "-mthumb"],
linkopts = ["-Tlinker_script.ld"],
deps = ["@nordic_sdk//drivers:gpio"]

)

With remote execution enabled, Bazel delegates this build to the
execution service (e.g., Forge or Nativelink), which invokes the cor-
rect cross-compiler, verifies the sandbox environment, and returns
the binary artifact. This approach makes it easy to test different
builds, maintain reproducibility, and scale across development
teams—all essential for fast-paced chip design cycles.

Building Beyond Your Local Machine | 43

Bazel’s platform abstraction and support for cross-compilation also
help developers switch between hardware targets without rewriting
build logic. The BUILD file in Example 1-12 shows rules for switch-
ing between microcontroller units (MCUs) or silicon revisions. The
platform rule defines a new platform, accepting constraints such as
a CPU or OS for a specific platform. The toolchain rule defines the
constraints for a given toolset.

Example 1-12. BUILD rules for switching between microcontroller
units (MCUs) or silicon revisions

platform(
name = "arm_cortex_m4",
constraint_values = [
"@platforms//cpu:arm",
"@latforms//os:none"

1,

)
toolchain(
name = "arm_gcc_toolchain”,
toolchain_type = "@bazel_tools//tools/cpp:toolchain_type",
toolchain = ":arm_gcc_impl",
target_compatible_with = [":arm_cortex_m4"]
)

By externalizing the complexity into these abstractions, Bazel ena-
bles clean separation of build logic from environment-specific
configurations—a core requirement in hardware-software codesign
workflows.

In summary, Bazel has become a key enabler for chip development
at scale—not by being a full toolchain itself, but by offering a declar-
ative, cache-friendly client that integrates with powerful remote exe-
cution systems like Forge. As the open source community builds
equivalents like Nativelink, more hardware teams can benefit from
the same modularity, scalability, and reproducibility that Bazel
brought to software engineering.

44 | Extending Bazel to Its Full Potential

Conclusion

Bazel is a feature-rich and versatile polyglot build tool that we've
explored with the help of typical use cases applicable to Java-based
projects. We identified the building blocks in Bazel responsible for
compiling, testing, and packaging code. You learned that Bazel takes
a strong, opinionated view on how to model a project as a direct
result of years of internal use at Google. While Bazel requires an
explicit definition of fine-grained modules and dependencies, it
rewards the user with fast, incremental, and parallel build execution.
Bazel’s remote caching and execution capabilities form the founda-
tion for scalable, performant enterprise projects, especially those
that reside in a monorepo. If needed, Bazel can be extended with
the help of macros and rules. These extension features enable Bazel
to easily adapt to the ever-changing landscape of new languages,
frameworks, and platforms.

Bazel’s feature set is quite impressive. It covers most aspects required
for building modern polyglot enterprise applications, small and
large. A first look at Bazel reveals that it can handle typical require-
ments with ease. Additionally, new open source platforms like Nati-
velink extend Bazel with a scalable backend infrastructure optimized
for distributed teams, large and complex code bases, and diverse
runtime environments.

Upon closer inspection, you'll find that the Bazel ecosystem still has
to catch up with some features that end users have come to love
from other prominent build tools and now expect. Over the course
of this report, we've touched on some of those aspects—for exam-
ple, refined and powerful dependency management capabilities, and
support for a standard way to publish process artifacts to binary
repositories. While all of these capabilities can be implemented as a
rule, the effort would be quite significant for a team trying to switch
to Bazel, ultimately leading to a less refined and polished experience.
As Bazel gains popularity, I have no doubt that the ecosystem will
catch up with other build tools. In the user documentation you can
find a list of available rules, some of which have been contributed by
the community.

It’s hard to give a generalized personal recommendation on a build
tool. It always depends on the needs of the organization, team, or
project. For some teams, flexibility and build language syntax is
important; for others, build execution performance and scalability is

Conclusion | 45

https://oreil.ly/RVZgQ

paramount. If you are evaluating Bazel to see whether it’s a good fit
for your project, I'd recommend implementing a prototype that can
live alongside your current automation logic. Measure and compare
aspects that are important to you and then make your decision. Very
soon, you'll determine whether Bazel can adapt to your needs.

46 | Extending Bazel to Its Full Potential

About the Authors

Brian Moakley is the author of the Building with Bazel course,
Unity Games by Tutorials, and Amazon Sumerian by Tutorials. He
has also produced many video courses, articles, and screencasts on
all aspects of mobile development. You learn more about his work at
WwWw.jezner.com.

Marcus Eagan is the CEO and founder of Trace Machina, creators
of Nativelink.

https://www.jezner.com

	Cover
	Trace Machina
	Copyright
	Table of Contents
	Extending Bazel to Its Full Potential
	Introducing Bazel
	What Is Bazel?
	Why Should I Use Bazel?

	Installing Bazel
	Installation Options
	Installing with Bazelisk
	Validating Your Installation
	Command-Line Completion

	Bazel Quick Start
	Basic Building Blocks
	Using Build Files
	Building a Simple C++ Project
	Building from the Command Line
	Exploring the Generated Artifacts
	Using bazelrc for Build Options
	The Lifecycle of a Bazel Build
	Driving Bazel from the IDE

	Dependency Management
	Modeling Fine-Grained Package Granularity and Dependencies
	Declaring and Using External Dependencies
	Incorporating Third-Party Package Managers like Maven

	Executing Automated Tests
	Extending Bazel’s Capabilities
	Extension Concepts
	The Starlark Build Language
	Writing a Macro by Example

	Building Beyond Your Local Machine
	Introducing Nativelink
	Executing Bazel Projects on CI/CD Platforms
	Remote Execution and Remote Caching
	Parallelism
	Containers
	Executing Simulations for AI-Powered Chips and Devices

	Conclusion

	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

